skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vindas-Meléndez, Andrés_R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The matching polytope of a graphGis the convex hull of the indicator vectors of the matchings onG. We characterize the graphs whose associated matching polytopes are Gorenstein, and then prove that all Gorenstein matching polytopes possess the integer decomposition property. As a special case study, we examine the matching polytopes of wheel graphs and show that they arenotGorenstein, butdopossess the integer decomposition property. 
    more » « less
  2. Abstract A barcode is a finite multiset of intervals on the real line. Jaramillo-Rodriguez (2023) previously defined a map from the space of barcodes with a fixed number of bars to a set of multipermutations, which presented new combinatorial invariants on the space of barcodes. A partial order can be defined on these multipermutations, resulting in a class of posets known as combinatorial barcode lattices. In this paper, we provide a number of equivalent definitions for the combinatorial barcode lattice, show that its Möbius function is a restriction of the Möbius function of the symmetric group under the weak Bruhat order, and show its ground set is the Jordan-Hölder set of a labeled poset. Furthermore, we obtain formulas for the number of join-irreducible elements, the rank-generating function, and the number of maximal chains of combinatorial barcode lattices. Lastly, we make connections between intervals in the combinatorial barcode lattice and certain classes of matchings. 
    more » « less
  3. Abstract A classical parking function of lengthnis a list of positive integers$$(a_1, a_2, \ldots , a_n)$$ ( a 1 , a 2 , , a n ) whose nondecreasing rearrangement$$b_1 \le b_2 \le \cdots \le b_n$$ b 1 b 2 b n satisfies$$b_i \le i$$ b i i . The convex hull of all parking functions of lengthnis ann-dimensional polytope in$${\mathbb {R}}^n$$ R n , which we refer to as the classical parking function polytope. Its geometric properties have been explored in Amanbayeva and Wang (Enumer Combin Appl 2(2):Paper No. S2R10, 10, 2022) in response to a question posed by Stanley (Amer Math Mon 127(6):563–571, 2020). We generalize this family of polytopes by studying the geometric properties of the convex hull of$${\textbf{x}}$$ x -parking functions for$${\textbf{x}}=(a,b,\dots ,b)$$ x = ( a , b , , b ) , which we refer to as$${\textbf{x}}$$ x -parking function polytopes. We explore connections between these$${\textbf{x}}$$ x -parking function polytopes, the Pitman–Stanley polytope, and the partial permutahedra of Heuer and Striker (SIAM J Discrete Math 36(4):2863–2888, 2022). In particular, we establish a closed-form expression for the volume of$${\textbf{x}}$$ x -parking function polytopes. This allows us to answer a conjecture of Behrend et al. (2022) and also obtain a new closed-form expression for the volume of the convex hull of classical parking functions as a corollary. 
    more » « less